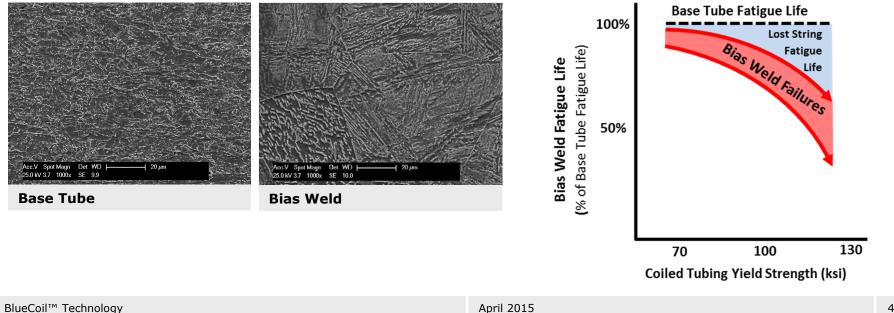


BlueCoil[™] Technology

Outline

- Conventional Coiled Tubing Technology and Manufacturing
- BlueCoil[™] Technology and CT Manufacturing
- Performance of BlueCoil[™] Technology and CT Grades
- Validation of BlueCoil[™] CT Grades for Field Applications
- Summary of Benefits


Conventional Coiled Tubing Technology and Manufacturing

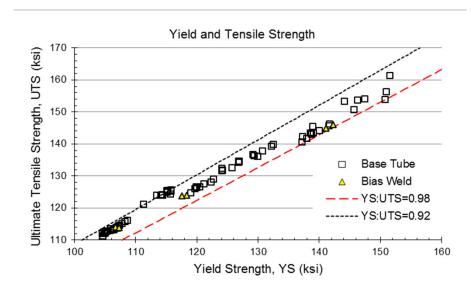
- Tube properties mostly defined by flat strip manufacturing
- Steel metallurgy limits making very high yield strength, reliable CT
- Welding degrades strip properties locally
- Final tube exhibits reduced performance in and around welds

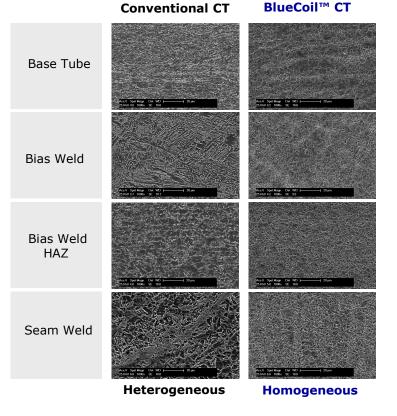
Conventional Coiled Tubing Technology and Manufacturing

- Coarse, non-uniform microstructure in weld and heat-affected zone areas •
- Bias weld fatigue and environmental performance degrade as CT yield strength is increased

BlueCoil[™] Technology & CT Manufacturing

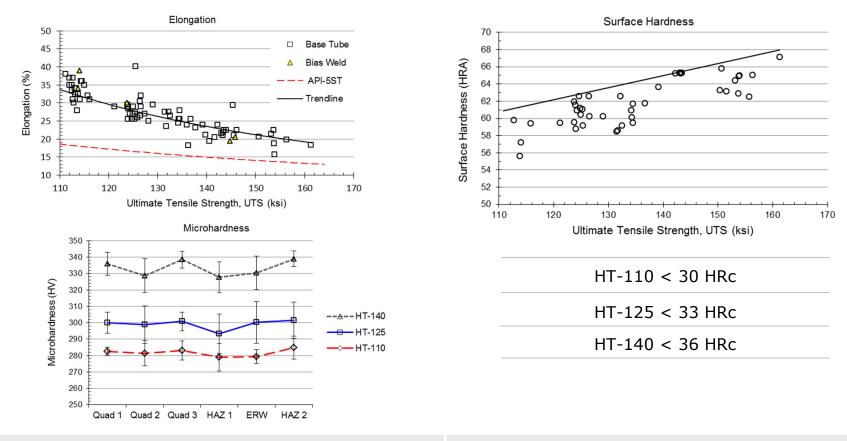
- New technology platform based on new steel chemistry and new manufacturing processes
- Technology platform for extending CT capability and reliability for extreme ops. demands
- New, superior microstructure & much higher strength
- CT properties defined continuously at the last manufacturing stage
- Uniform microstructure across entire CT string, including all welds

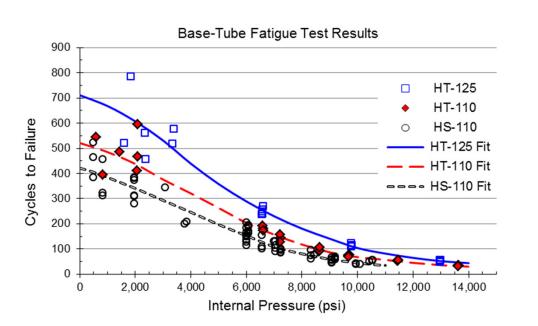

BlueCoil[™] Technology


April 2015

5

Metallurgical and Mechanical Properties of BlueCoil[™] CT

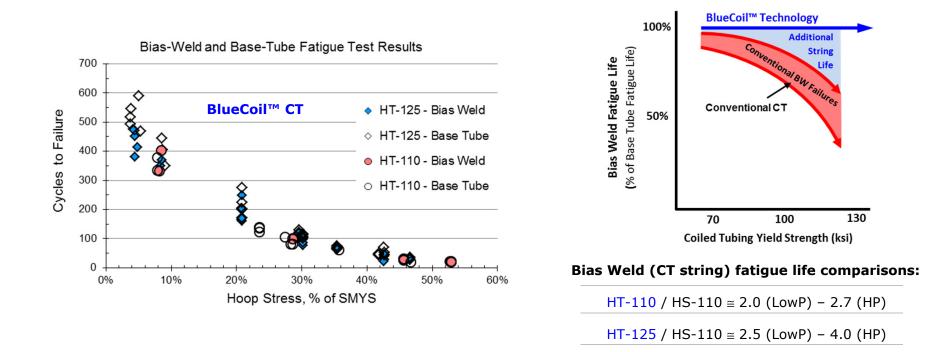

- Better and uniform microstructure across entire CT string
- Ultra high strength grades



BlueCoil™ Technology April 2015	6
---------------------------------	---

Mechanical Properties of BlueCoil[™] CT

BlueCoil[™] CT Base-Tube Fatigue Performance

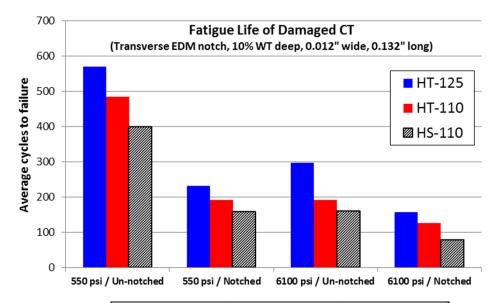


Average fatigue life comparisons:
HT-110 / HS-110 ≅ 1.2 (LowP) - 1.6 (HP)
HT-125 / HS-110 \cong 1.5 (LowP) – 2.5 (HP)
HT-125 / HT-110 ≅ 1.3 (LowP) - 1.6 (HP)

BlueCoil™ Technology	April 2015	8

A

BlueCoil[™] CT Bias-Weld Fatigue Performance



Similar fatigue performance of BlueCoil[™] CT bias weld and base tube

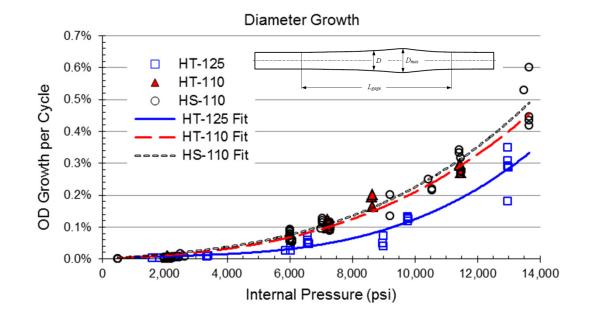
BlueCoil™ Technology April 2015	9
---------------------------------	---

Base-Tube Fatigue Performance -Damaged CT

Fatigue de-rating, sharp transverse cut, 10% WT deep			
Grade	Low Pressure	Mid Pressure	
HS-110	61%	51%	
HT-110	60%	34%	
HT-125	59%	47%	

Average fatigue life comparisons – notched CT:

HT-110 / HS-110 \cong 1.2 (Low P) – 1.6 (Mid P)
HT-125 / HS-110 ≅ 1.5 (Low P) - 2.0 (Mid P)

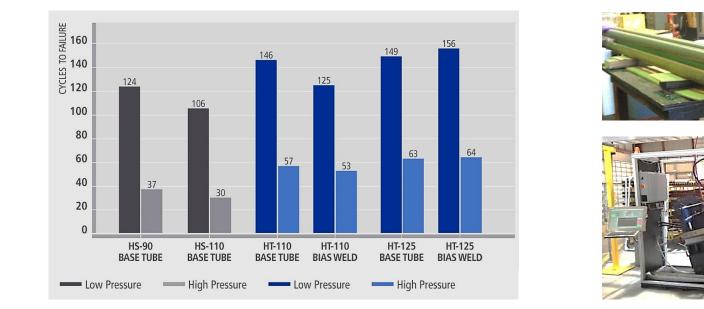

More residual life after CT damage

BlueCoil[™] Technology

April 2015

10

BlueCoil[™] CT Ballooning Performance

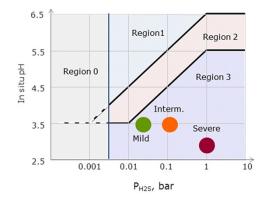


Less ballooning than conventional CT

BlueCoil™ Technology	April 2015	11

BlueCoil[™] CT Sour Fatigue Performance

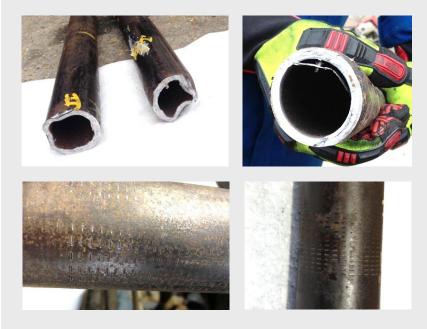
BlueCoil[™] CT grades have longer sour fatigue life even as the CT strength is increased


Bias-weld sour fatigue performance of BlueCoil[™] CT is similar to base-tube performance

BlueCoil[™] Technology

BlueCoil[™] CT Sour Performance – Sulfide Stress Cracking (SSC)

Coiled Tubing		Stress Level		Test Environment		t
Туре	Grade	(% SMYS)	Absolute	Mild	Interm.	Severe
	HS-80	90 %	72 ksi	Passed (5/5)	Inconcl. (4/4)	Failed (6/6)
Convent. CT	HS-90	90 %	81 ksi	Failed (2/2)	N/T	Failed (2/2)
	HS-110	90 %	99 ksi	Failed (2/2)	N/T	Failed (2/2)
	HT-80	90 %	72 ksi	N/T	N/T	Passed (3/3)
BlueCoil™	HT-100	90 %	90 ksi	N/T	N/T	Passed (6/6)
СТ	HT-110	90 %	99 ksi	Passed (4/4)	Failed (2/2)	Failed (2/2)
	HT-125	90 %	112.5 ksi	Failed (2/3)	N/T	N/T


¢ ↑ ERW

Improved SSC resistance of BlueCoil[™] CT allows 20ksi to 30ksi higher strength grades than conventional CT

BlueCoil™ Technology	April 2015	13

BlueCoil[™] CT Handling and Equipment Compatibility

BOP shear and slip tests

- 4-1/16" & 5-1/8" 15K BOPs
- HT-110 & HT-125 CT
- 2.0" & 2-3/8" x 0.204" CT
- All straight/clean cuts achieved

• No slip at 50,000 lb pull & push

BlueCoil[™] Technology

BlueCoil[™] CT Handling and Equipment Compatibility

Injector and BHA connector tests

- HT-125, 2.0" x 0.204" CT
- HR 680 Injector
- No slippage at 80k lb pull
- Dimple, slip & set screw connectors
- No movement under 20k lb pull

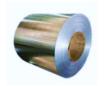
BlueCoil[™] CT Field Operations

BlueCoil[™] Technology

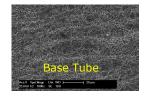
Process Video

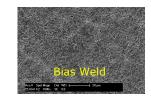
BlueCoil[™] Technology Summary

New CT technology platform


- New steel chemistries
- New heat-treatments
- Platform for meeting extreme demands

Fundamentally better microstructure


 Tempered martensite vs. ferrite, pearlite, and bainite


Uniform microstructure along CT string

- Implemented continuously and at the last manufacturing stage
- Same in base tube, bias weld & seam weld

New Steels

Summary of Benefits

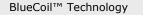
Much higher yield-strength grades are possible without degrading performance

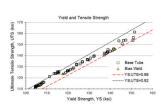
• Higher pressures, deeper wells, more safety margin

Better fatigue performance vs. conv. CT

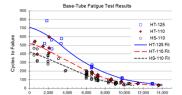
- Base-tube life longer for the same grade
- 2 to 4 times longer bias-weld fatigue life
- Better fatigue resistance of damaged CT
- Better CT utilization and more reliability

□ Less pipe ballooning than conv. CT

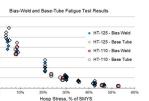

• Enables higher pressures and flow rates

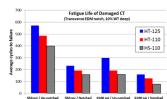

Longer sour fatigue life for entire string

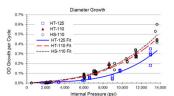
- Even for ultra-high strength CT grades
- Bias-weld sour fatigue life similar to base tube
- Lower likelihood for CT failures

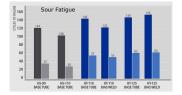

• Improved SSC resistance

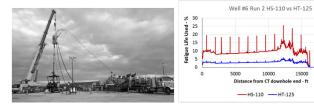
- Allows 20ksi-30ksi higher strength grades
- More safety and reliability margin






60




Internal Pressure (psi)

Thank you for your attention.

Questions?

BlueCoil[™] Technology

April 2015

20